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NONSMOOTH AND NONCONVEX MODELS
OF THE BUSINESS PROCESS

Ivan MESKO*

Abstract: The lincar model can in some cases be used in the opti-
mization of the business process. In this article an example is emplo-
yved to show that, using the liner mixed integer model, the business
process can be presented more authentically. Nonconvex polyhedrons
and some classes of monsmooth functions can be expressed using ze-
ro-one variables. Using these expressions some nonsmooth programmuing
problems can be transformed into liner mixed integer programming
problems and solved by available computer prognams.

1. INTRODUCTION

The linear programming problem can be used as an approximation
of the model for the business process [4]. Because of the development
of computational technigues for liner mixed integer programming, ihe
liner mixed integer model can be used. What needs time is the analy-
sis of the business process and itransmission and control of data and
not the solving of mixed integer linear programming problems [7],
[8], [9]. A Petri-net can be advantageous for the analysis of the busi-
ness process [6]. The construction of such a net also takes. tine, but
it can be useful for the technological analysis of the production process
and for other purposes.

Some applicable nonlinear optimization models can be expressed
in the form of liner mixed integer programming problems. Using these
expressions we are mot in need of computer programs for solving all
original problems even if suitable algorithms exist for these problems.
This result can be useful since many nonlinear functions important
for practice, can be approximated by liner mixed integer functions [5].
An example iis the linear fractional funotion [3] which can be expressed
in a separable form subjeot to additional separable constraints and
then approximated by liner mixed integer functions.

The product uf (x), where f: R™~R is a bounded function and au is
a zerno-ome vaniable, can be expressed in the fonm
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uf(x) =y (1.1)
subject to

fix)=y+z (1.2)

—du <y < du (1.3)

du—1)<z=<d(l—u) (1.4)

Here d is a positive large enough constant. If § (x) is linear then the
term uf (x) can be lineanized.

The function f [L(x)], where f: R-»R and L: R*>R is a separable
function, can be expressed in the separable form. Similarly the func-
iion

F(x)={[L(x), Ly(x},..., L (x)] (1.5)

can be simplified. Using ithe substitution

yi:Li(x) i=1,...,k (1.6)
we Oobtain
Fix)=1f(y, yo---, ¥ (1.7

This substitution can be exceedingly effective if L, are linear and f is
separable. If (1.5) arises in a programming problem, it can be replaced
by (1.7) subject to (1.6). If k < n the number of variables which arise
in the function F is reduced but the number of variables and con-
siraints in the model increase, Such a substitution is useful especially
if the programming problem can in this way be replaced or approxi-
mated by a liner mixed integer programming problem. The large-scale
mixed integer programming problem can be simply solved [8].

In part 2 an example for linear model of a business process is
given. In part 3 this model is extended to linear mixed integer model.
The programming problem

maximize f (x) subject to xeB,

where f (x} is a linear function and B a monconvex polyhedron, using
the expressions given in part 4, can be transformed into a linear mixed.
integer programming problem. Using this result, many goals can be.
considered in the model if at least one of them must be achieved.

Some types of continuous piecewise linear funoctions which can be
considered as simple examples of nonsmooth functions, can be expli-
citly expressed as linear functions using zero-one variables sub ject to
additional linear comstraints. In pant 5 some expressions for other non-
smooth functions are given. As a spedial case the absolute value func-
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tion is considered. This funotion is very important in optimization mo-
dels. Using these results, some nonsmooth programming problems [2]
containing comtinuous functions of few variables can either be trams-
formed into liner mixed integer programming problems or approxi-
mated by them.

2. MOTIVATIONS EXAMPLE

For fillustration we take an example from the woodworking in-
dustry. We divide ‘the business process into production activities and
market activities. In some cases a division of the business process with
the following properties can be successful. For any production activity
the consumption of the production elements and the revenue of the
products are proportional to the quantity of connected production acti-
vity. The income and the revenue are proportional to the quantities
sold and bought respctively. A linear model for optimization of the
business process can then be used [4].

. Let us suppose that in our case the linear model is allowed. Data
for construction of the model can be arranged in two tables. For our
example they are igiven in Tables 1 and 2. In Table 1 data for sources
and consumers are given. In this table production elements, semi-pro-
ducts and final products are considered. For El, E3 and E4 we have
sources. E3 can be bought and we have two suppliers. The first one
can supply a maximum of 100 wmits and the corresponding purchase
prices is 15 monetary units per wnit. For E1 we have a source from
our own capacity. Instead of the punchase pmice here we take the
variable dniving cost per munit of capacity, which is not taken into
account by consumption of elements considered in Table 1 or by the
cost considered in Table 2. For semi<product ‘E6 we have neither sour-
ces mor consumers. Elements E2, E5, E7, E8 and E9 can be sold.

In Table 2 consumption and production of elements and the mar-
ginal cost, which is not connected with the consumption of elements
considered in the Table 1, are given for each production activity. Per
unit of production activity X8 for example 3 units of ES5, 2 units of
E6 and 12 units of E7 are consumed and one unit of E8 is produced. If
consumptions of E5, E6 and E7 are not considered, the variable pro-
duction cost per unit of X8 is 10 monetary units.
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Table 1. Data about sources and consumers

Element Sources and oconsumers
Symbol  Name Symbol Price Minimal Maximal
El Production means I Yl 60 10
E2 Plates 200 100 Z2 15 20 30
E3 Plates 160X 100 Y31 15 100
Y32 16
E4 Production means II Y4 2 100
E5 Plates 200x60 Z5 11
Eé Plates 16060
E7 Plates 55x40 Z7 2 100 150
E8 Product A Z81 100 10
782 95 10
ES Product B Z91 60
292 65 50

Table 2. Technological data

Production activity Consumption Produation
Symbol Name Symbol Quantity Symbol Quantity
X1 Production 200x 100 El 0.1 E2 1

Cost 10
X2 Production 160x 100 El 0.08 E3 1
Cost 9
X3 Cut E214+0+3 E2 1 E5 1
E4 0.4 E7 3
X4 Cut E20+1+4 E2 1 E6 1
E4 0.5 E7 4
X5 Cut E2 04+0+8 E2 1 E7 8
E4 0.5
X6 Cut E3 0+1+42 E3 1 Eé6 1
E4 0.3 E7 2
X7 Cut E3 0+0+6 E3 1 E7 6
E4 0.4
X8 Production A E5 3 E8 1
E6 2
E7 12
Cost 10
X9 Production B E6 3 E9 1
E7 6

Cost 6
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Denote by x;, yix and z; the decision variables conmected to the ac-
tivities Xk, Yk and Zk. Considering the given data we obtain an optimi-
zation model in the form:

maximize 15z, + 11zs + 22 + 1002y + 952z, + 6025, + 65207 — 60y, —
_ lSy;l _ 16y32 _— Zy‘ - IOXl _ 9XZ — ‘IOXB -— 6XQ

subject to

y;—0.1x;— 0.08x, = 0 2.1)

Y+ Yt X —xs—x, 20

yu< 100

Yy— 0.4x3— 0.5x4— 0.5x; — 0.3x,— 0.4x, = 0 2.2)
vy < 100

X3— 3xg— 25 =0

Xy + X5—2x3— 3%, = 0

3x; + 4x, + 8x5 + 2x5 + 6, — 12x3— 6x— 27, = 0

100 = z,< 150

Xy— g — 25 = 0

Zgy = 10 Zg = 10

Xog— 29 —2 =0

253 < 50 @2.3)
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Table- 3. Result for production quantities

Production activity Optimal - Production
_ . production cost too

Symbol Name quantity high for:

X1 Production 200x100 95.000

X2 Production 160x100 6.250

X3 Cut E2 14+0+3 30.000

X4 Cut E2 04144 45.000

X5 Cut E2 0+0+8 | 5.750

X6 Cut E3 0+1+42 218.333

X7 Cut E3 0+0+6 6.417

X8 Production A 10.000

X9 Production B 81.111

Using the computer program LOMP we obtain the result given in
Tables 3 and 4. The optimal objective function value is 880.417. The
reduced cost is negative if the upper bound for corresponding varniable
is active. By means of the computer program " LOMP calculations
using shadow prices can be made. In this way opportunity costs are
included and the fixed cost is excluded [4].

Table 4. Result for sources and consumers

Sources and consumers

Element Shadow
Symbol Name price  Symbol  Quantity Red.cost
El Production means I  87.500 Y1 10.000 —27.500
E2 Plates 200x100 18.750 Z2 20,000 3.750
E3 Plates 160x100 16000 Y31  100.000 — 1.000
Y32 112,083
E4 Production means II  6.667 Y4 100.000 — 4.667
E5 Plates 200x60 15.292 Z5 | 4.292
E6 Plates 160x60 13.917
E7 ({Plates 55x40 2.042 Z7  100.000 0.042
E8 Product A 108.203 781 8.208
782 10.000 13.208
E9 Product B 60.000 791 31.111
792 50.000

— 5.000

PP 5-Amwfﬁb”;i?;ﬁéﬂﬁﬂawl‘.-m -t 3
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Table 5. Calculation for X5 by shadow prices

Element Consumed Production Sum of

quantity  cost per ~  cost per
Symbol ~  Name | per umit umit unit
E2 Plates 200x100 : 1 - 18.750
~E4 Production means II 0.5 3.333 22,083

Calculations for X5 and X8 are given in Tables 5 and 6. The sha-
dow price of E8 equals the sum of cost per unit X8 and the production
activity X8 is optimal. The revenue per unit of XS5 is

' 8%2.04167 = 16.33336

and the prdductiou cost of X5 is too high for 5.750 monetary units
per unit of production activity.

Table 6. Calculation for X8 by shadow prices

Element Consumed Productiomy = Sum of
quantity  cost per cost per
Symbol Name - . . . . (per unit unit - unit
E5 Plates 200x60 3 45.875
E6 Plates 160x60 2 27.833
-E7 . Plates 55x40 . .. .. 12 . .. 24,500 N
o Oﬁher tmangmnasl cost - - 10,000 .- 108.208

3. PIECEWISE LINEAR MODEL

. Consider the business process if the cost, the revenue and the
consumption of production elements are piecewise linear functions.
Then a linear mixed integer model is obtained [5]. Let us take the
example given in part two subject to additional conditions.

Before gtanting a mew cutting plan the production equipment must
be made ready. Therefore we need 0.5 units of E4 and the additional
cost of 2 monetary umnits arises. Then instead of (2.2) we obtain

¥, ——05t3-—-04x3-—05t,—05x4—05t5—05x5—05t6~——03x6
— 0.5¢,— 0.4x, = 0

subject to addibioml constraints

400t; — x; = 0 t; =0 or 1 j=3...,7
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where 400 is a chosen large enough constamt. In the objective func-
tion we obtain additional terms

—2t;— 2ty—2ts— 2t,— 21,

Similarly the cost for the market research can be considered. If

10 mometary mnits must be spent before the second product can be
sold to the second oconsumer, instead of (2.3) we obtain the constraint

50*t9—292 =0 tg =0 or 1

and in the objective function the additional terrn —10t,

Instead of the manginal cost of 6 monetary umnits conneated with
the production activity x, there arises ‘the manginal cost of 3 monetary
units and fixed cost of 120 monetary units at start of x,, 80 monetary

units if X, sunplus 38 units and 80 monetary units if x, surplus 76 umnits,
We must take the substitution

KXo = Xop 4+ Xgp + %3
subjeat to nonmegative variables Xy; and

38u; — x5, 2 u; =0 or 1 =123
Xop—38u, = () Xgy— 38u; = 0.

Instead of —6x, in the objective function we obtain

— 120111 I 80“2 — 80”3 i 3.7C91 _ 3x92 i 3x93-

At the beginning of the production of plates 200x100 for the first
3 wmits we need 0.11 time umits and at the beginning of the produc-
tion of plates 160x100 0.09 time mnits per unit of production activity.
Therefore we must take the substitttion

Xp = X + x5, j=12

subject to nonnegative variables X; and X;,. Instead of (2.1) we obtain
Y1—0.11% — 0.1x;, — 0.09xy — 0.08x,, = ¢

and additional constraints

Constants are determined considening (2.1) and 0 <y, =< 10.
The model can be written in the fonm

maximize 15z, + T1zs + 27, + 100zg + 9575, + 60zg; + 6575, — :
— 60y; — 15y, — 16y;, — 2y, — 10, — 10x;, — 9xp —
-—-9.7622—]0x3-—-3x91—3x92—3x93-—2f3-—2t4—-21‘5-—21‘6—21‘7——
—10t9—120u1—80u2—80u3

L R :"W
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subject to mnonnegative vaniables and

y;— 0.11x;; — 0.1x;, — 0.09x,; — 0.08x,, = 0
yr =10 (E1)

Xy Xp— Xy ==Xy X5 ~— 25 = 0

20 < z, <30 (E2)
Vit Vi + Xy + Xpp— Xg— X7 = 0

yu = 100 E3)

Y¢— 0.5t; — 0.4x;— 0.5t,— 0.5, — 0.5t — 0.5.x; —
—0.5t4—03x;— 0.5t;, — 0.4x, = 0

400t; —x; = 0 ti=10 or 1 i=3...,7

vy = 100 (E4)
x3—3x3-—25 =0 : (ES)
Xy + X — 2%3 — 3%y — 3%gy — 3x03 = 0 (E6)

3x; + 4x, + 8x5 + 2x, + 6x;
— .szs b 6x91 _-_— 6x92 -_ 6x93 — 27 2 0

100 = z; < 150 (E7)

Xg— Zg— g2 = 0

281 = 10 Z8Z = 10 (IEB)

Xoy + Xgp + Xg3— 291 — 29y Z 0

50ty — 29, = 0 ty=0or 1 (E9)
X, —3t, =0 100t; — x;, = 0 t, =0 or 1 (X1)
Xy—3t,=0 125t, — x5 2 0 t,=0or 1 {X2)
38u; — xo; = 0 u; =0 or 1 i=123

Xgy — 38u, = 0 Xg3— 38u; = 0 (X9)
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Table 7. Result for sources and consumers
Element Shadow Sources and consumers
Symbol Name Pric®  Symbol  Quantity Red.cost
El Production means I  96.000 Y1 10.000 —36.000
E2 Plates 200x100 19.600 Z2 20.000 4.600
E3 Plates 160x100 16.000 Y31 100.000 — 1.000
Y32 98.300
E4 Production means II 2.000 Y4 97.840
- E5 Plates 200x60 14.400 Z5 3.400
E6 Plates 160x60 12.600
E7 Plates 55x40 2.000 Z7 109.400
E8 Product A 102.400 Z81 2.400
782 10.000 7.400
E9 Product B 60.000 791 26.000 '
Z92 50.000 — 5.000

Table 8. Result for production quantities

Production activity Optimal Production
production - cost too
Symbol Name quantity high for:

X11  Production 200x100 3.000 - 0.960
X12 96.700
X21  Production 160x100 1.640
X22 0.680
X3 Cut E2 14+0+3 30.000
X4  Cut E2 0+1+4 49.700
X5 Cut E2 0+0+8 4.600
X6 Cut E3 0+1+2 198.300
X7 Cut E3 0+046 4.800
X8 Production A 10.000
X91 Production B 38.000
X92 38.000

-X93 7.200

The result obtained by PC is given in Tables 7 and 8. Zero-one
variables t,, ts, t; and u; equal zero, other zero-one variables equal one,
The optimal objective function value is 869.320.
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4. DIFFERENT EXPRESSIONS OF. NONCONVEX POLYHEDRONS

Let f.;: R"— R be linear functions. Then

j=1

. ko -

is a polyhedmn whlch can fbe nonconvex. If B is lboundad it can be
expressed in the fonm

B = {xER"ld(u —1)= f,,(r) by < d(l—u) for IEE
fiffx) —b; =< d(l—u) fori€L, _

. k '
uj.:Oor.lfO?’j:J;-”:k)Z ufZI}

=1

where d is a suitable large enough constant. This can be proved using
the implication

t; = I - x&B for any § subject to ] =} = k.

The monconvex polyhedron can also be defined in the form
K
B = {xeB.|x¢ U P;}
j=1

x;r‘rher-el-Bc is a éohvéx polyhedroﬁ -
P—{xER“lf;;(-x)<brr for z—j ..,m} | .:,7..',k:

armd f,J are |]1mea,r ﬁuncmons lLf B. is bounvded 1t =can be empressed in
the form

B = {xEBclb”—f”(x) = du” ]‘tor { = J, S, A8 HT,J:, )

mf

}: u; =m;—1 for j:‘]‘,-...,k}.

The constant nd is ‘needed also in thls case. For each unequaJtMn e can
take another constant.
Let us consider an example of a linear mixed integer.model of a

IirusmesS process ‘where m goals are defined and at least one of them
must be achieved. Let the goals be exupressed in the form - .

fl(xh"' xru Uy, ... uk)zo i=I,...,17’I‘ f (41J

where X; are decision variables and w; are zero-one variables contained
im the unodeil This condition can be expressed by following constra-
imts:
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filxp oo, Xu ub“'xuk)z'—dvi f=-’,---,m 4.2)
Vit vyt oy, = m—] 4.3)
vw=0orlfori=1...,m

where d is a positive lange enough constant. If the solution does not
satisfy the condition (4.1) then the i-th goal is not achieved. In this case
since (4.2) v; = 1. Therefore at least one of goals must be achieved for
any solution which satisfies (4.2) and (4.3). If m goals exist and n of
them must be achieved whre n < m, similar expression can be used.
These results can be extended and the general assignment problem can
be included in the optimization model.

Consider the example given in part 3 where at least one of the
following three conditions mmust be satisfied:

9524, + 60z, = 4000

From (4.2) and (4.3) it follows

95zg, + 602y, + 4000v, =4000 (4.4)
—¥1; + 100172 = (4.5)
v, — 10v; < 90 (4.6)
v+ vy = 2 v, = 0 or 1 i = 1,2,3. (47)

The tenms with integer variables in (4.4 — (4.6) are transposed on
the leftdhand side. Instead of d iin (4.4) — (4.6) suitable different con-
stants are taken. We obtain the same objective function as in part 3
subject to constraints given in pant 3 and additional constraints (4.4)
— (4.7). The constraint y, < 100 can since (4.6) be omited and the con-
straint y;, = 100 can since (4.5) be omited.

Table 9. Result for sources and consumers

Element Shadow Sources and consumers
Symibol Name Pic€  Symbol  Quantity Red.cost
El Production means I 37.500 Y1 10.000 —27.500
E2 Plantes 200x 100 18.750 Z2 20.000 3.750
E3 Plates 160x 100 16.000 Y3l 100.000 —1.000
Y32 74.500
E4 Production mmeans II 10.000 Y4 90.000 —8.000
E5 Plates 200:x60 15.625 Z5 4.625
E6 Plates 160x 60 14.250
E7 Plates 55x40 2.375 zZ7 100.000 0.375
E8 Product A 113.875 Z81 13.875
Z:82 10.000 18.875
E9  Product B 60.000 Z91 18.333

792 50.000 —5.000

. T Mo o Trimes § macms e
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The optimal solution is given by Tables 9. and 10. The reduced
cost for v, is 80, zero-one vaniables v,, t;, t, and u; equal zero, other
zero-one variables equal one, the optimal objective function value is
807.500.

Table 10. Result for production activities

Production ‘ Optimal Production

production cost too
Symbol  Name quantity high for:
X11  Production: 200x 100 3.000 0.875
X12 92.000
X21 Production 160x 100 3.000 0.875
X22 2.500
X3 Cut E21+4043 30.000
X4 Cut E20+1+4 45.000
X5 Cut E20+4+ 0+ 8 4.750
X6 CutE30+1+2 180.000
X7 CutE3 04046 5.750
X8  Production A 10.000
X91  Production B 38.000
X92 30.333
X93 0.000

If the choice of the thind goal expressed by (4.6) is omitted, we
obtain the same result for production activities and for shadow pri-
ces as in jpart 3. The difference appeans only in the market activities
Y31 and Y32 and in the objective funotion.

vy =0 v = 198.300 zZ = 769.320.

If goals are differently favorable and the favorableness is mea-
surable, then they can be considered in the objective funation by
the sum

Sl —v) +cfl —wvy) + ...+ c{l —w)

where c¢; are prices of goals expressed in the same unit as the ob-
Jjective function.

Since detenmination of the constant d in some cases is mot tri-
vial, the expression of unbounded monconvex polyhedron can be used.
The convex hull of the polyhedron
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where B; are comvex polyhedrons, can be expressed- in the fornm

C = {xER"|x = 22wy, 2 u;=1, y€B, for j=1,...,k}

i=1 j=1

where w; are nonnegative. If Y; are zero-one vaniables, then C = B,
where B is a nonconvex polyhedron. If the constant d can be de-
termined simply this expression is not advantageous since more addi-
tional variables must be defined. e
5. EXPRESSIONS OF NONSMOOTH FUNCTIONS
Consider the function |

fi(x) for g(x) <0

o) = {fz(x) for g(x) >0

(5.1)

where f,(x), fx) and g(x) are continuous real funtions for x€R® and
g(x) let be bounded. If _

filx) = foAx) for x€G = {xER"g(x) = 0}, o ‘ (5.2)

then f(x) is continuous for X€G. The function (5.1) can be expressed
in the fonm '

f(x) = hix,u) = uf(x) + ( I —u)fyfx) o A : | : (5.3)
—du < g(x) < d(I — w) I G4

where d is a large enough constant. In (5.3) it is considered that
from (5.4) for zero-one variable u it follows

u = u(x).

If fi(x) and fy(x) satisfy the condition (5.2), then (5.4) can be rep-
laced by : ‘

—du < g(x) < d(1 — u). - (5.5)
Considering (1.1) — (1.4) from (5.3) it follows o
Ch(xu) =y, + y, A, T (58)
subjeat to (5.5) and

fx) =y, + z, (5.7)
fAx) =y, + z, (5.8)

et E——
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~du =<y, + 2, < du (3.9)
diu—1)=<z; + y, =d(1 —u). (5.10)
The function (5.1) can be replaced by (5.6) subject to (5.4) and additional
constraints (5.7) — (5.10). If g(x), f,(x) and f,(x) are linear, then this

substitution except (5.4) can be used in linear mixed integer program-
ming. If f;(x) and f,(x) satisfy (5.2) then (5.5) can be used.

Let f;(x) and g;;(x) be real function for XE€R", Consider the function

' fi(x) for x€G; i=1,...k
f(x) = : . (5.11)

undefined otherwise
where
G, ={x€ER"gyi(x) =0 for i=1,...,m} j=1,...,k
If fi(x) = f;(x) for XEG;NG;, i = j, then f(x) is a single valued function.

If G; and G; have not internal joint points for i = j and ‘G; are boun-
ded, then (5.11) can be written in the form

k
f) = T wufyx)

subject to zero-one variables u; and

y+ i+t u =1

gij(x) = d(l —uy) i=1,...,m j=1,...,k.

Consider the function (5.3) subject to (5.5) if yEG exists for which
(5.2) is not true. In this case the function (5.3) is not single valued
for y. The snmg;le valued function can be defined by (5.3) subject to

(5.4). Since (5.4) is mot convenient jn the mathematical programming,
instead of (5.3) in some practical cases the function

h(x,p} = (1 — p)fdx) + pfix) (5.12)
subject to zero-one variables u, and u, and

—du, < g(x) < du, U, < p <l—u, | (5.13)
can be used. If f(x) and fy(x) satify the condition (5.2), then

hix,p) = fi(x) = fi(x) for x€EG.
If (5.2) is not true, then for x€G it follows

min(f(x), fAx) < h(x,p) < max(fi(x), fAx)). | (5.14)
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If the function

f(x) defined by (5.1) for g(x) = 0

Fx = { satisfies the condition (5.14) for g(x) =0

arises in a programming problem, then it can be replaced by (5.12)
subjeat to (5.13). If F(x) arises in the oObjective function or in ome
inequation only, then for g(x) = 0 the most favorable value for F(x)
is either fy(x) or fy(x). In this case F(x) can be replaced by (5.3)
subject to (5.5), and (5.3) can be simplified using (1.1) — (1.4). Si-
milar analysis can be made for (5.11).

In case £f(x) = |gx)| from (5.3) it follows

fix) = —g(x)
fAx) = glx)
[g(x)| = uf(x) + (1 —w)fsx) = (1 —2u)g(x).

Considering (1.1) — (1.4) for bouded g(x) we obtain

lex)l =y + 2 (5.15)
subject to (5.5), suitable constant d, zero-one variable u and

glx) =z—y 0<y=<du 0 <z=<d(l—u). (5.16)

Consider the statistical problem

minimize 12 (— 1 ph{t)R (5.17)

f=1 i=1

Here p; are unknown parameters, X; and t; are given values, f: R—» R
are chosen funations and m < n. Instead of (5.17) we can take

n m
minimize 3 |x;— I pift;)].
i=1 i=1

This problem can be transformed into linear mixed integer prog-
ramming problem. From (5.15) and (5.16) it follows

minimize 1 (y; + z;)
, =
subject to

Xj— .ZI pifi(t) = z;—y
i =
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m
—du; = x;— _:Ipifi(t]) =< d(l —u)
I =

0=<yj<dw Osz;=d(l—u) j=1...,n

Consider the programming problem [1]

n k P
maximize 1 ¢ + L aur; + 1= IS
ji=1 1=1 t=1

subject to r; = —1 or 1 and

n k

Lo agx; + 12 by = gy i=1,...,m
i=1 =1

_Eb:ixi+3t:Bz t=1,...,p

j 1

where a;, by, hy, B, ¢, q; and a, are given parameters. It can be
transformed into linear mixed integer programming problem.

n

k P |
maximize 12 ¢x% + X ol —2v) + 1 (v, + 2)
=1 t=1

J=1

subjeot to zero-one variables u, and vi, suitable constand d and

n k
L1 aux; + 32 hg(l—2v) = g, i=1,...,m

j=1 I =1

j=1

0=y, <du, 0=z, =d(l—u,) t=1,...,p.
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NEGLADKI IN NEKONVEKSNI MODELI POSLOVNEGA PROCESA
Rezime

V nekaterih primerih je pri optimiranju poslovanja primerno upo-
rabiti linearni model. V tem dlanku je s primerom pokazano, da je
z linearnim meSanim celoStevilskim modelom mogode poslovni proces
natancneje opisati. S pomocjo linearnega meianega celoStevilskega mo-
dela, ki ga je mogoce obdelati z obstojedimi racunalniskimi programi,
lahko izrazimo tudi optimizacijske naloge, pri katerih je mnoZica mno#-
nih reSitey nekonveksni polieder. Taka naloga se pojavi pri optimira-
nju poslovanja, kadar imamo na voljo veé ciljev, in Felimo dose&i vsaj
enega od njih, e je te cilje mogoée izraziti kot linearne funkcije od-
locitvenih spremenljivk. Podobne izraZave obstajujo tudi za nekatere
negladke funkcije, Tako lahko izraiamo absolutne vrednosti funkcij,
kar je uporabljeno na primeru iz statistike.
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