National fiscal rules, Maastricht fiscal criteria and non-linear public debt dynamics in Serbia

Main Article Content

Vladimir Andrić

Abstract

The aim of the paper is to assess the reaction of fiscal policymakers in Serbia when the public debt-to-GDP ratio is above the 45% limit set in the national fiscal rules. The paper proposes a two-regime nonlinear self-exciting threshold autoregressive (SETAR) model as an appropriate econometric framework for modeling the asymmetries in the dynamics of the public debt/GDP ratio with respect to the 45% public debt limit. The empirical evidence suggests that fiscal policymakers in Serbia do not adhere to the 45% public debt/GDP ceiling and instead use the Maastricht limit of 60% as a target reference point for public debt management. The article contributes to the current policy debate by providing empirical evidence to support the claim that the behavior of fiscal policymakers in Serbia between 2001Q1 and 2023Q2 could jeopardize the credibility of fiscal policy and increase the probability of default by the Serbian government on its maturing public debt. 

Article Details

Section

Articles

References

Aiyagari, R., Marcet, A., Sargent, T., & Seppälä, J. (2002). Optimal Taxation without State-Contingent Debt. Journal of Political Economy, 110(6), 1220-1254.

Andric, V., & Minovic, J. (2022). The Sources of Serbian Budgetary Imbalances in a Time of Transition, Crisis and Global Pandemics. In Economic and Financial Implications of COVID-19 Crises, ed. S. Redzepagic, A. P. Duarte, M. Siničáková, & D. Bodroza, 107-125. Nice: Université Côte d’Azur.

Arsic, M., Nojkovic, A., & Randjelovic, S. (2017). Determinants of discretionary fiscal policy in Central and Eastern Europe. Economic Systems, 41(3), 367-378.

Badia, M. M., Medas, P., Gupta, P., & Xiang, Y. (2022). Debt is not free. Journal of International Money and Finance, 127(C), 102654.

Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1-22.

Balaban, M., & Grubisic, Z. (2021). Monitoring Fiscal Risks in the National Economy. Economic Analysis, 54(2), 128-138.

Barro, R. (1979). On the Determination of the Public Debt. Journal of Political Economy, 87(5), 940-971.

Bec, F., Guay, A., Nielsen, H. B., & Säidi, S. (2022). Power of unit root tests against nonlinear and noncausal alternatives. THEMA Working Paper 2022/14.

Bhandari, A., Evans, D., Golosov, M., & Sargent, T. (2017). Fiscal Policy and Debt Management with Incomplete Markets. The Quarterly Journal of Economics, 132(2), 617-663.

Billio, M., Ferrara, L., Guégan, D. & Mazzi, G.L. (2013). Evaluation of Regime Switching Models for Real†Time Business Cycle Analysis of the Euro Area. Journal of Forecasting, 32(7), 577-586.

Blanchard, O. J. (1990). Comment on “Can Severe Fiscal Contractions be Expansionary?”. In NBER Macroeconomics Annual, ed. O. Blanchard, & S. Fisher, 111-117. Cambridge, MA: MIT Press.

Bohn, H. (2007). Are stationarity and cointegration restrictions really necessary for the intertemporal budget constraint? Journal of Monetary Economics, 54(7), 1837-1847.

Brown, R. L., Durbin, J., & Evans, J. M. (1975). Techniques for Testing the Constancy of Regression Relationships Over Time. Journal of the Royal Statistical Society, Series B, 37, 149-192.

Carrasco, M. (2002). Misspecified Structural Change, Threshold, and Markov-switching Models. Journal of Econometrics, 109(2), 239-273.

Chan, K. S., Petruccelli, J. D., Tong, H. & Woolford, S. W. (1985). A Multiple-Threshold AR(1) Model. Journal of Applied Probability, 22(2), 267-279.

Chortareas, G., Kapetanios, G., & Uctum, M. (2008). Non-linear Alternatives to Unit Root Tests and Public Finances Sustainability: Some Evidence from Latin American and Caribbean Countries. Oxford Bulletin of Economics and Statistics, 70(5), 645–663.

Cimadomo, J. (2014). Real-Time Data and Fiscal Policy Analysis: A Survey of the Literature. Journal of Economic Surveys, 30(2), 302-326.

Considine, J., & Gallagher, L. A. (2008). UK Debt Sustainability: Some Non-linear Evidence and Theoretical Implications. The Manchester School, 76(3), 320–335.

Cuestas, J. C. (2020). Changes in sovereign debt dynamics in Central and Eastern Europe. International Journal of Finance & Economics, 25(1), 63-71.

Cuestas, J. C., & Regis, P. J. (2018). On the dynamics of sovereign debt in China: Sustainability and structural change. Economic Modelling, 68(C), 356–359.

Creel, J., Dabrowski, M., Farvaque, E., Janus, J., & Stanek, P. (2023). A stringent necessity: Addressing fiscal bubbles with fiscal rules in Central and Eastern Europe. Sciences Po OFCE Working Paper 11/2023.

Davoodi, H. R., Elger, P., Fotiou, A., Garcia-Macia, D., Han, X., Lagerborg, A., Lam, R. W., & Medas, P. (2022). Fiscal Rules and Fiscal Councils: Recent Trends and Performance during the Covid-19 Pandemic. IMF Working Paper 22/11.

Dickey, D. A. & Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica, 49(4), 1057-1072.

Elliott, G., Rothenberg, T. J., and Stock, J. H. (1996). Efficient Tests for an Autoregressive Unit Root. Econometrica, 64(4), 813-836.

Enders, W. (2001). Improved critical values for the Enders-Granger unit-root test. Applied Economics Letters, (8)4, 257-261.

Enders, W., & Granger, C. J. W. (1998). Unit-root Tests and Asymmetric Adjustment with an Example Using the Term Structure of Interest Rates. Journal of Business & Economic Statistics, 16(3), 304-311.

Esteve, V., & Prats, M. A. (2023). Testing explosive bubbles with time-varying volatility: The case of Spanish public debt. Finance Research Letters, 51, 103330.

Fiscal Council. (2024). Opinion on Fiscal Strategy Draft for 2025 with Projections for 2026 and 2027. Fiscal Council Reports.

Ghosh, A. R., Kim, J. I., Mendoza, E. G., Ostry, J. D., & Qureshi, M. S. (2013). Fiscal Fatigue, Fiscal Space and Debt Sustainability in Advanced Economies. Economic Journal, 123, F4-F30.

Glavaski, O., & Pucar Beker, E. (2020). Fiscal Adjustments in the European Union versus West Balkan Economies: Evidence from Heterogeneous Panels. Economic Analysis, 53(1), 149-162.

Gnegne, J., & Jawadi, F. (2013). Boundedness and non-linearities in public debt dynamics: A TAR assessment. Economic Modelling, 34(C), 154–160.

González, M., & Gonzalo, J. (1997). Threshold Unit Root Models. DES Working Paper 97-50.

Hansen, B. (2017). Regression Kink With an Unknown Threshold. Journal of Business & Economic Statistics, 35(2), 228-240.

Jiang, Z., Lustig, H., Van Nieuwerburgh, S., & Xiaolan, M. Z. (2024). What Drives Variation in the U.S. Debt-to-Output Ratio? The Dogs that Did not Bark. Journal of Finance, 79(4), 2603-2665.

Juselius, K., & Mladenovic, Z. (2002). High Inflation, Hyperinflation and Explosive Roots: The Case of Yugoslavia. Department of Economics University of Copenhagen Discussion Paper 02-23.

Koczan, Z. (2015). Fiscal Deficit and Public Debt in the Western Balkans: 15 Years of Economic Transition. IMF Working Paper 15/172.

Koczan, Z. (2017). Late to the game? Capital flows to the Western Balkans. IMF Working Paper 17/92.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. & Shin, Y. (1992). Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root. Journal of Econometrics, 54(1-3), 159-178.

Legrenzi, G., & Milas, C. (2011). Debt Sustainability and Financial Crises: Evidence from the GIIPS. CESifo Working Paper No. 3594.

Ministry of Finance of the Republic of Serbia. (2024). Public Finance Bulletin. Available at https://www.mfin.gov.rs/en/activities/bulletin-public-finance-2.

Ng, S., and Perron, P. (2001). Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power. Econometrica, 69(6), 1519-1554.

OECD. (2015). Achieving prudent debt targets using fiscal rules. OECD Economics Department Policy Notes No. 28.

Petruccelli, J. D. & Woolford, S. W. (1984). A Threshold AR(1) Model. Journal of Applied Probability, 21(2), 270-286.

Roubini, N., & Sachs, J. D. (1989). Political and economic determinants of budget deficits in industrial economies. European Journal of Political Economy, 33(5), 903-933.

Sarno, L. (2001). The behavior of US public debt: a non-linear perspective. Economics Letters, 74(1), 119–125.

Schwert, G. W. (1989). Tests for Unit Roots: A Monte Carlo Investigation. Journal of Business & Economic Statistics, 7(2), 5–17.

Statistical Office of the Republic of Serbia. (2024). Quarterly Gross Domestic Product by Expenditure Approach (SNA 2008/ESA 2010). Available at Dissemination database search (stat.gov.rs).

Sutherland, A. (1997). Fiscal crises and aggregate demand: can high public debt reverse the effects of fiscal policy? Journal of Public Economics, 65(2), 147-162.

Tsay, R. S. (1989). Testing and modeling threshold autoregressive processes. Journal of the American Statistical Association, 84(405), 231–240.

Yoon, G. (2012). War and peace: Explosive US public debt, 1791–2009. Economics Letters, 115(1), 1–3.